Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development.
نویسندگان
چکیده
During kidney development, factors from the metanephric mesenchyme induce the growth and repeated branching of the ureteric bud, which gives rise to the collecting duct system and also induces nephrogenesis. One signaling pathway known to be required for this process includes the receptor tyrosine kinase RET and co-receptor GFR(&agr;)-1, which are expressed in the ureteric bud, and the secreted ligand GDNF produced in the mesenchyme. To examine the role of RET signaling in ureteric bud morphogenesis, we produced transgenic mice in which the pattern of RET expression was altered, or in which a ligand-independent form of RET kinase was expressed. The Hoxb7 promoter was used to express RET throughout the ureteric bud branches, in contrast to its normal expression only at the bud tips. This caused a variable inhibition of ureteric bud growth and branching reminiscent of, but less severe than, the RET knockout phenotype. Manipulation of the level of GDNF, in vitro or in vivo, suggested that this defect was due to insufficient rather than excessive RET signaling. We propose that RET receptors expressed ectopically on ureteric bud trunk cells sequester GDNF, reducing its availability to the normal target cells at the bud tips. When crossed to RET knockout mice, the Hoxb7/RET transgene, which encoded the RET9 isoform, supported normal kidney development in some RET-/- animals, indicating that the other major isoform, RET51, is not required in this organ. Expression of a Hoxb7/RET-PTC2 transgene, encoding a ligand-independent form of RET kinase, caused the development of abnormal nodules, outside the kidney or at its periphery, containing branched epithelial tubules apparently formed by deregulated growth of the ureteric bud. This suggests that RET signaling is not only necessary but is sufficient to induce ureteric bud growth, and that the orderly, centripetal growth of the bud tips is controlled by the spatially and temporally regulated expression of GDNF and RET.
منابع مشابه
Non-cell-autonomous retinoid signaling is crucial for renal development.
In humans and mice, mutations in the Ret gene result in Hirschsprung's disease and renal defects. In the embryonic kidney, binding of Ret to its ligand, Gdnf, induces a program of epithelial cell remodeling that controls primary branch formation and branching morphogenesis within the kidney. Our previous studies showed that transcription factors belonging to the retinoic acid (RA) receptor fami...
متن کاملThe transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development.
Signaling by the Ret receptor tyrosine kinase promotes cell movements in the Wolffian duct that give rise to the first ureteric bud tip, initiating kidney development. Although the ETS transcription factors Etv4 and Etv5 are known to be required for mouse kidney development and to act downstream of Ret, their specific functions are unclear. Here, we examine their role by analyzing the ability o...
متن کاملExpression of c-ret promotes morphogenesis and cell survival in mIMCD-3 cells.
c-Ret, a protein tyrosine kinase receptor, and its ligand glial-derived neurotropic factor (GDNF) are critical for early regulation of ureteric bud development and nephrogenesis. To address whether c-ret directly initiates epithelial cell morphogenesis, the c-ret receptor was expressed in murine inner medullary collecting duct cells (mIMCD-3, a cell line of ureteric bud origin, which has no det...
متن کاملRenal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development.
The c-ret gene encodes a receptor tyrosine kinase that is expressed in the Wolffian duct and ureteric bud of the developing excretory system. Newborn mice homozygous for a mutation in c-ret displayed renal agenesis or severe hypodysplasia, suggesting a critical role for this gene in metanephric kidney development. To investigate the embryological basis of these defects, we characterized the ear...
متن کاملRenal agenesis and hypodysplasia in ret-k2 mutant mice result from defects in ureteric bud development
The c-ret gene encodes a receptor tyrosine kinase that is expressed in the Wolffian duct and ureteric bud of the developing excretory system. Newborn mice homozygous for a mutation in c-ret displayed renal agenesis or severe hypodysplasia, suggesting a critical role for this gene in metanephric kidney development. To investigate the embryological basis of these defects, we characterized the ear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 126 7 شماره
صفحات -
تاریخ انتشار 1999